Speech Command Recognition with Convolutional Neural Network
نویسندگان
چکیده
This project aims to build an accurate, smallfootprint, low-latency Speech Command Recognition system that is capable of detecting predefined keywords. Using the Speech Commands Dataset provided by Google’s TensorFlow and AIY teams, we have implemented different architectures using different machine learning algorithms. Our models include: Vanilla Single-Layer softmax model, Deep Neural Network and Convolutional Neural Network. The Convolutional Neural Network proves to outperform the other two models and can achieve accuracy of 95.1% for 6 labels. Keywords—Keyword Spooting (KWS), Deep Neural Network (DNN), Convolutional Neural Network(CNN)
منابع مشابه
شبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملHonk: A PyTorch Reimplementation of Convolutional Neural Networks for Keyword Spotting
We describe Honk, an open-source PyTorch reimplementation of convolutional neural networks for keyword spoing that are included as examples in TensorFlow. ese models are useful for recognizing “command triggers” in speech-based interfaces (e.g., “Hey Siri”), which serve as explicit cues for audio recordings of uerances that are sent to the cloud for full speech recognition. Evaluation on Goo...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کامل